Второй закон отражение

Журнал «Квант»

Отражение света. Законы отражения

Свет распространяется прямолинейно только в однородной среде. Если свет подходит к границе раздела двух сред, он изменяет направление распространения.

Кроме того, часть света возвращается в первую среду. Это явление называется отражением света. Луч света, идущий к границе раздела сред в первой среде (рис. 16.5), называется падающим (а). Луч. остающийся в первой среде после взаимодействия на границе раздела сред, называется отраженным (b).

Угол \(\alpha\) между падающим лучом и перпендикуляром, восставленным к отражающей поверхности в точке падения луча, называется углом падения.

Угол \(\gamma\) между отраженным лучом и тем же перпендикуляром называется углом отражения.

Еще в III в. до н.э. древнегреческим ученым Евклидом опытным путем были открыты законы отражения. В современных условиях проверку этого закона можно провести с помощью оптической шайбы (рис. 16.6), состоящей из диска, по окружности которого нанесены деления, и из источника света, который можно перемещать по краю диска. В центре диска закрепляют отражающую поверхность (плоское зеркало). Направляя свет на отражающую поверхность, измеряют углы падения и углы отражения.

1.Лучи падающий, отраженный и перпендикуляр, восставленный к границе двух сред в точке падения луча, лежат в одной плоскости.

2.Угол отражения равен углу падения:

Законы отражения можно вывести теоретически, пользуясь принципом Ферма.

Пусть на зеркальную поверхность падает свет из точки А. В точке А1 собираются лучи, отраженные от зеркала (рис. 16.7). Предположим, что свет может распространяться двумя путями, отражаясь от точек О и О’. Время, которое потребуется свету, чтобы пройти путь АОА1, можно найти по формуле \(t=\frac<\upsilon>+\frac<\upsilon>\), где \(

\upsilon\) — скорость распространения света.

Кратчайшее расстояние от точки А до зеркальной поверхности обозначим через l, а от точки А1 — через i1.

Из рисунка 16.7 найдем

Из рисунка видим, что \(\frac=\sin \alpha\); \(\frac=\sin \gamma\).

Следовательно, \(t’_x=\frac<1><\upsilon>(\sin \alpha-\sin \gamma)\).

Для того чтобы время t было минимально, производная должна быть равна нулю. Таким образом, \(\frac<1><\upsilon>(\sin \alpha-\sin \gamma)=0\). Отсюда \(

\sin \alpha = \sin \gamma\), а так как углы \(

\gamma\) — острые, то отсюда следует равенство углов\[

Мы получили соотношение, выражающее второй закон отражения. Из принципа Ферма вытекает и первый закон отражения: отраженный луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности, так как если бы эти лучи лежали в разных плоскостях, то путь AOA1 не был бы минимальным.

Падающий и отраженный лучи обратимы, т.е. если падающий луч направить по пути отраженного луча, то отраженный луч пойдет по пути падающего — закон обратимости световых лучей.

В зависимости от свойств границы раздела сред отражение света может быть зеркальным и диффузным (рассеянным).

Зеркальным называется отражение, при котором падающий на плоскую поверхность (рис. 16.8) параллельный пучок лучей после отражения остается параллельным.

Шероховатая поверхность отражает параллельный падающий на нее пучок света по всевозможным направлениям (рис. 16.9). Такое отражение света называют диффузным.

Соответственно различают зеркальные и матовые поверхности.

Следует отметить, что это относительные понятия. Поверхностей, отражающих только зеркально, не существует. В большинстве случаев имеется лишь максимум отражения в направлении угла зеркального отражения. Этим объясняется то, что мы видим зеркало и другие зеркально отражающие поверхности со всех сторон, а не только в одном направлении, в котором они отражают свет.

Одна и та же поверхность может быть зеркальной и матовой в зависимости от длины волны падающего света.

Если граница имеет вид поверхности, размеры d неровностей которой меньше длины волны света \(\lambda\), то отражение будет зеркальным (поверхность капли ртути, отполированная металлическая поверхность и т.д.), если \(d \gg \lambda\), отражение будет диффузным. Чем лучше обработана поверхность, тем большая доля падающего света отражается в направлении угла зеркального отражения, а меньшая — рассеивается.

Рассеянный свет возникает вследствие мелких дефектов полировки, царапин, мельчайших пылинок, имеющих величину порядка нескольких микронов.

Поверхность, которая равномерно рассеивает падающий свет во все стороны, называют абсолютно матовой. Абсолютно матовых поверхностей также не существует. К абсолютно матовым поверхностям близки поверхности неглазурованного фарфора, чертежной бумаги, снега.

Даже для одного и того же излучения матовая поверхность может стать зеркальной, если увеличить угол падения. Диффузно отражающие поверхности могут отличаться и по величине коэффициента отражения \(\rho=\frac> \), показывающего, какую часть энергии W падающего на поверхность светового пучка составляет энергия Wотр отраженного светового пучка.

Белая бумага для рисования имеет коэффициент отражения, равный 0,7—0,8. Очень высокий коэффициент отражения для поверхностей, покрытых окисью магния, — 0,95 и очень малый для черного бархата — 0,01—0,002.

Заметим, что зависимость отражения и поглощения от частоты колебаний чаще всего имеет избирательный характер.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — С. 457-460.

Законы отражения света

На границе раздела двух различных сред, если эта граница раздела значительно превышает длину волны, происходит изменение направления распространения света: часть световой энергии возвращается в первую среду, то есть отражается, а часть проникает во вторую среду и при этом преломляется. Луч АО носит название падающий луч, а луч OD – отраженный луч (см. рис. 1.3). Взаимное расположение этих лучей определяют законы отражения и преломления света.

Рис. 1.3. Отражение и преломление света.

Угол α между падающим лучом и перпендикуляром к границе раздела, восстановленным к поверхности в точке падения луча, носит название угол падения.

Угол γ между отражённым лучом и тем же перпендикуляром, носит название угол отражения.

Каждая среда в определённой степени (то есть по своему) отражает и поглощает световое излучение. Величина, которая характеризует отражательную способность поверхности вещества, называется коэффициент отражения. Коэффициент отражения показывает, какую часть принесённой излучением на поверхность тела энергии составляет энергия, унесённая от этой поверхности отражённым излучением. Этот коэффициент зависит от многих причин, например, от состава излучения и от угла падения. Свет полностью отражается от тонкой плёнки серебра или жидкой ртути, нанесённой на лист стекла.

Законы отражения света

Угол отражения γ равен углу падения α :

Законы отражения света были найдены экспериментально ещё в 3 веке до нашей эры древнегреческим учёным Евклидом. Также эти законы могут быть получены как следствие принципа Гюйгенса, согласно которому каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Волновая поверхность (фронт волны) в следующий момент представляет собой касательную поверхность ко всем вторичным волнам. Принцип Гюйгенса является чисто геометрическим.

На гладкую отражательную поверхность КМ (рис. 1.4) падает плоская волна, то есть волна, волновые поверхности которой представляют собой полоски.

Рис. 1.4. Построение Гюйгенса.

А1А и В1В – лучи падающей волны, АС – волновая поверхность этой волны (или фронт волны).

Пока фронт волны из точки С переместится за время t в точку В, из точки А распространится вторичная волна по полусфере на расстояние AD = CB, так как AD = vt и CB = vt, где v – скорость распространения волны.

Волновая поверхность отражённой волны – это прямая BD, касательная к полусферам. Дальше волновая поверхность будет двигаться параллельно самой себе по направлению отражённых лучей АА2 и ВВ2.

Прямоугольные треугольники ΔАСВ и ΔADB имеют общую гипотенузу АВ и равные катеты AD = CB. Следовательно, они равны.

Углы САВ = = α и DBA = = γ равны, потому что это углы со взаимно перпендикулярными сторонами. А из равенства треугольников следует, что α = γ .

Из построения Гюйгенса также следует, что падающий и отражённый лучи лежат в одной плоскости с перпендикуляром к поверхности, восстановленным в точке падения луча.

Законы отражения справедливы при обратном направлении хода световых лучей. В следствие обратимости хода световых лучей имеем, что луч, распространяющийся по пути отражённого, отражается по пути падающего.

Большинство тел лишь отражают падающее на них излучение, не являясь при этом источником света. Освещённые предметы видны со всех сторон, так как от их поверхности свет отражается в разных направлениях, рассеиваясь. Это явление называется диффузное отражение или рассеянное отражение. Диффузное отражение света (рис. 1.5) происходит от всех шероховатых поверхностей. Для определения хода отражённого луча такой поверхности в точке падения луча проводится плоскость, касательная к поверхности, и по отношению к этой плоскости строятся углы падения и отражения.

Рис. 1.5. Диффузное отражение света.

Например, 85% белого света отражается от поверхности снега, 75% — от белой бумаги, 0,5% — от чёрного бархата. Диффузное отражение света не вызывает неприятных ощущений в глазу человека, в отличие от зеркального.

Зеркальное отражение света – это когда падающие на гладкую поверхность под определённым углом лучи света отражаются преимущественно в одном направлении (рис. 1.6). Отражающая поверхность в этом случае называется зеркало (или зеркальная поверхность). Зеркальные поверхности можно считать оптически гладкими, если размеры неровностей и неоднородностей на них не превышают длины световой волны (меньше 1 мкм). Для таких поверхностей выполняется закон отражения света.

Рис. 1.6. Зеркальное отражение света.

Плоское зеркало – это зеркало, отражающая поверхность которого представляет собой плоскость. Плоское зеркало даёт возможность видеть предметы, находящиеся перед ним, причём эти предметы кажутся расположенными за зеркальной плоскостью. В геометрической оптике каждая точка источника света S считается центром расходящегося пучка лучей (рис. 1.7). Такой пучок лучей называется гомоцентрическим. Изображением точки S в оптическом устройстве называется центр S’ гомоцентрического отражённого и преломлённого пучка лучей в различных средах. Если свет, рассеянный поверхностями различных тел, попадает на плоское зеркало, а затем, отражаясь от него, падает в глаз наблюдателя, то в зеркале видны изображения этих тел.

Рис. 1.7. Изображение, возникающее с помощью плоского зеркала.

Изображение S’ называется действительным, если в точке S’ пересекаются сами отражённые (преломлённые) лучи пучка. Изображение S’ называется мнимым, если в ней пересекаются не сами отражённые (преломлённые) лучи, а их продолжения. Световая энергия в эту точку не поступает. На рис. 1.7 представлено изображение светящейся точки S, возникающее с помощью плоского зеркала.

Луч SO падает на зеркало КМ под углом 0°, следовательно, угол отражения равен 0°, и данный луч после отражения идёт по пути OS. Из всего множества попадающих из точки S лучей на плоское зеркало выделим луч SO1.

Луч SO1 падает на зеркало под углом α и отражается под углом γ ( α = γ ). Если продолжить отражённые лучи за зеркало, то они сойдутся в точке S1, которая является мнимым изображением точки S в плоском зеркале. Таким образом, человеку кажется, что лучи выходят из точки S1, хотя на самом деле лучей, выходящих их этой точки и попадающих в глаз, не существует. Изображение точки S1 расположено симметрично самой светящейся точке S относительно зеркала КМ. Докажем это.

Луч SB, падающий на зеркало под углом 2 (рис. 1.8), согласно закону отражения света отражается под углом 1 = 2.

Рис. 1.8. Отражение от плоского зеркала.

Из рис. 1.8 видно, что углы 1 и 5 равны – как вертикальные. Суммы углов 2 + 3 = 5 + 4 = 90°. Следовательно, углы 3 = 4 и 2 = 5.

Прямоугольные треугольники ΔSOB и ΔS1OB имеют общий катет ОВ и равные острые углы 3 и 4, следовательно, эти треугольники равны по стороне и двум прилежащим к катету углам. Это означает, что SO = OS1, то есть точка S1 расположена симметрично точке S относительно зеркала.

Для того чтобы найти изображение предмета АВ в плоском зеркале, достаточно опустить перпендикуляры из крайних точек предмета на зеркало и, продолжив их за пределы зеркала, отложить за ним расстояние, равное расстоянию от зеркала до крайней точки предмета (рис. 1.9). Это изображение будет мнимым и в натуральную величину. Размеры и взаимное расположение предметов сохраняются, но при этом в зеркале левая и правая стороны у изображения меняются местами по сравнению с самим предметом. Параллельность падающих на плоское зеркало световых лучей после отражения также не нарушается.

Рис. 1.9. Изображение предмета в плоском зеркале.

В технике часто применяют зеркала со сложной кривой отражающей поверхностью, например, сферические зеркала. Сферическое зеркало – это поверхность тела, имеющая форму сферического сегмента и зеркально отражающая свет. Параллельность лучей при отражении от таких поверхностей нарушается. Зеркало называют вогнутым, если лучи отражаются от внутренней поверхности сферического сегмента. Параллельные световые лучи после отражения от такой поверхности собираются в одну точку, поэтому вогнутое зеркало называют собирающим. Если лучи отражаются от наружной поверхности зеркала, то оно будет выпуклым. Параллельные световые лучи рассеиваются в разные стороны, поэтому выпуклое зеркало называют рассеивающим.

3.2. Законы отражения и преломления света

Корпускулярная теория очень просто объясняла явления геометрической оптики, описываемые в терминах распространения световых лучей. С точки зрения волновой теории, лучи — это нормали к фронту волны. Принцип Гюйгенса также позволяет объяснить законы геометрической оптики на основе волновых представлений о природе света.

Закон отражения

Когда световые волны достигают границы раздела двух сред, направление их распространения изменяется. Если они остаются в той же среде, то происходит отражение света.

Отражение света — это изменение направления световой волны при падении на границу раздела двух сред, в результате чего волна продолжает распространяться в первой среде.

Закон отражения света хорошо известен:

Падающий луч, перпендикуляр к границе раздела двух сред в точке падения и отраженный луч лежат в одной плоскости, причем угол падения равен углу отражения.

Направления распространения падающей и отраженной волн показаны на рис. 3.2.

Рис. 3.2. Отражение света от плоской поверхности

Закон отражения может быть выведен из принципа Гюйгенса. Действительно, допустим, что плоская волна, распространяющаяся в изотропной среде, падает на границу раздела двух сред АС (рис. 3.3).

Рис. 3.3. Применение принципа Гюйгенса к выводу закона отражения

Достаточно рассмотреть два параллельных луча I и в падающем пучке. Углом падения называют угол между нормалью п к поверхности раздела и падающим лучом I. Плоский фронт AD падающей волны сначала достигнет границы раздела двух сред в точке А, которая станет источником вторичных волн. Согласно принципу Гюйгенса, из нее, как из центра, будет распространяться сферическая волна. Через время

,

то есть с запаздыванием во времени на , луч из падающего пучка придет в точку С, которая в этот момент времени также станет источником вторичной волны. Но, к этому моменту вторичная сферическая волна, распространяющаяся из точки А, уже будет иметь радиус (как и должно быть: ). Мы знаем теперь положение двух точек фронта отраженной волны — С и В. Чтобы не загромождать рисунок, мы не показываем вторичных волн, испущенных точками между А и С, но линия CD будет касательной (огибающей) ко всем из них. Стало быть, действительно является фронтом отраженной волны. Направление ее распространения (лучи II и ) ортогонально фронту CD. Из равенства треугольников ABC и ADC вытекает равенство углов

что, в свою очередь, приводит к закону отражения

На рис. 3.4 представлена интерактивная модель отражения света.

Рис. 3.4. Изучение закона отражения света

Закон преломления

Если световые волны достигают границы раздела двух сред и проникают в другую среду, то направление их распространения также изменяется — происходит преломление света.

Преломление света — это изменение направления распространения световой волны при переходе из одной прозрачной среды в другую.

Направление распространения падающей и преломленной волны показано на рис. 3.5.

Рис. 3.5. Преломление света на плоской границе раздела двух прозрачных сред

Закон преломления гласит:

Падающий луч, перпендикуляр к границе раздела сред в точке падения и преломленный луч лежат в одной плоскости, причем отношение синуса угла падения к синусу угла преломления постоянно для данной пары сред и равно показателю преломления второй среды относительно первой

Здесь показатель преломления среды, в которой распространяется преломленная волна, показатель преломления среды, в которой распространяется падающая волна.

Закон отражения также вытекает из принципа Гюйгенса. Рассмотрим (рис. 3.6) плоскую волну (фронт АВ), которая распространяется в среде с показателем преломления , вдоль направления I со скоростью

Эта волна падает на границу раздела со средой, в которой показатель преломления равен , а скорость распространения

Рис. 3.6. К выводу закона преломления света с помощью принципа Гюйгенса

Время, затрачиваемое падающей волной для прохождения пути ВС, равно

За это же время фронт вторичной волны, возбуждаемой в точке А во второй среде, достигнет точек полусферы с радиусом

В соответствии с принципом Гюйгенса положение фронта преломленной волны в этот момент времени задается плоскостью DC, а направление ее распространения — лучом III, перпендикулярным к DC. Из треугольников и следует

Таким образом, закон преломления света записывается так:

На рис. 3.7 представлена интерактивная модель преломления света на границе раздела двух сред.

Рис. 3.7. Изучение закона преломления

Для еще одной иллюстрации применения принципа Гюйгенса рассмотрим пример.

Пример. На плоскую границу раздела двух сред падает нормально луч света. Показатель преломления среды непрерывно увеличивается от ее левого края к правому (рис. 3.8). Определим, как будет идти луч света в этой неоднородной среде.

Рис. 3.8. Искривление луча света в неоднородной среде

Пусть фронт волны АА подошел к границе раздела сред. Точки раздела сред можно рассматривать как центры вторичных волн. Через время испущенные вторичные сферические волны достигают точек на расстоянии от фронта АА. Поскольку показатель преломления среды растет слева направо, эти расстояния убывают слева направо. Огибающая к вторичным волнам — новый фронт ВВ — повернется. Если теперь взять точки фронта ВВ за источники вторичных волн, то за время они породят волны, образующие фронт СС. Он еще более повернут. Его точки порождают фронт DD и т. д. Проводя нормаль к волновым фронтам в разные моменты времени, получаем путь светового луча в среде с переменным показателем преломления (зеленая линия). Видно, что луч искривляется в сторону увеличения показателя преломления. Аналогия: если притормозить левые колеса автомобиля, его повернет налево. Для света степень «торможения» растет с ростом показателя преломления среды: .

Эта задача имеет отношение к явлению, наблюдающемуся на море. Когда ветер дует с берега, иногда возникает так называемая «зона молчания»: звук колокола с судна не достигает берега. Обычно говорят, что звук относится ветром. Но даже при сильном урагане скорость ветра примерно в 10 раз меньше скорости звука, так что «отнести» звук ветер никак не может. Объяснение заключается в том, что скорость встречного ветра у поверхности моря вследствие трения меньше, чем на высоте. Поэтому скорость звука у поверхности больше, и линия распространения звука загибается кверху, не попадая на берег.

http://www.nvtc.ee/e-oppe/Sidorova/objects/index.html – Законы преломления, отражения света. Зеркала. Теория и примеры задач. В «Итоговых заданиях» — кроссворд.

http://publ.lib.ru/ARCHIVES/B/. – Тарасов Л.В., Тарасова А.Н., «Беседы о преломлении света».

Принцип Ферма.

Итак, волновая оптика способна объяснить явления отражения и преломления света столь же успешно, как и геометрическая оптика. В основу последней, трактующей явления на основе законов распространения лучей, положен принцип Ферма:

Свет распространяется по такому пути, для прохождения которого требуется минимальное время.

Для прохождения участка пути свету требуется время

где v=с/п — скорость света в среде. Таким образом, время t, затрачиваемое светом на путь от точки 1 до точки 2, равно

Второй закон отражение

3.1. Основные законы геометрической оптики

Основные законы геометрической оптики были известны задолго до установления физической природы света.

Закон прямолинейного распространения света : в оптически однородной среде свет распространяется прямолинейно. Опытным доказательством этого закона могут служить резкие тени, отбрасываемые непрозрачными телами при освещении светом источника достаточно малых размеров («точечный источник»). Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны. Таким образом, геометрическая оптика, опирающаяся на представление о световых лучах, есть предельный случай волновой оптики при λ → 0 . Границы применимости геометрической оптики будут рассмотрены в разделе о дифракции света.

На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а часть пройдет через границу и продолжит распространяться во второй среде.

Закон отражения света : падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости ( плоскость падения ). Угол отражения γ равен углу падения α.

Закон преломления света : падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:

Закон преломления был экспериментально установлен голландским ученым В. Снеллиусом в 1621 г.

Постоянную величину n называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления .

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ1 к скорости их распространения во второй среде υ2:

Абсолютный показатель преломления равен отношению скорости света c в вакууме к скорости света υ в среде:

Рис 3.1.1 иллюстрирует законы отражения и преломления света.

Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.

При переходе света из оптически более плотной среды в оптически менее плотную n 2 1 – абсолютный показатель преломления первой среды.

Для границы раздела стекло–воздух ( n = 1,5 ) критический угол равен αпр = 42° , для границы вода–воздух ( n = 1,33 ) αпр = 48,7° .

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов , которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей (рис 3.1.3). Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой .

Угол падения образован лучом падения АВ и перпендикуляром СВ, восстановленным в точке падения луча на границу раздела двух сред, угол отражения — образован лучом отражения В D и этим же перпендикуляром.
Отражение и поглощение падающего на тело излучения зависит от рода вещества, состояния поверхности, состава излучения и угла падения.

1). Падающий луч, отражённый луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости.

2) Угол отражения равен углу падения. Световые лучи обладают свойством обратимости.

При таком отражении, падающий на поверхность пучок параллельных лучей отражается тоже параллельными лучами.

Здесь закон отражения для каждого конкретного луча тоже выполняется. Рассеянный (диффузный) свет более приятен для глаз, чем зеркально отражённый, он меньше утомляет. Различают матовые (диффузные) поверхности и зеркальные, одна поверхность может быть зеркальной и матовой для разных излучений. Даже для одного излучения матовая поверхность становится зеркальной, если увеличить угол падения.

Бумага разных сортов отличается своей гладкостью, но даже самая гладкая на наш взгляд бумага, имеет волокнистое строение: впадинки и бугорки на её поверхности можно рассмотреть через увеличительное стекло. Свет, падающий на бумагу, отражается и бугорками, и впадинками, то есть рассеивается.

Чтобы добиться некоторой зеркальности от очень гладкой бумаги, возьмите лист и, прислонив его край к переносице, повернитесь к открытому окну (конечно, в яркий, солнечный день), при этом ваш взгляд должен скользить по листу. Вы увидите на нём бледное отражение неба, изображения предметов, находящихся за окном. И чем лучше будет скользить взгляд по бумаге, тем яснее будет отражение за окном. Так можно рассматривать отражение лампы и другого,ярко освещённого предмета в помещении. Превращение листа в « зеркало » объясняется загораживанием бугорками впадинок. Беспорядочных лучей от впадин при этом не наблюдается, тем самым ничего не мешает видеть то, что отражают бугорки.

Закон отражения света

Отраженный и падающий лучи лежат в плоскости, содержащей перпендикуляр к отражающей поверхности в точке падения, и угол падения равен углу отражения.

Представьте, что вы направили тонкий луч света на отражающую поверхность, — например, посветили лазерной указкой на зеркало или полированную металлическую поверхность. Луч отразится от такой поверхности и будет распространяться дальше в определенном направлении. Угол между перпендикуляром к поверхности (нормалью) и исходным лучом называется углом падения, а угол между нормалью и отраженным лучом — углом отражения. Закон отражения гласит, что угол падения равен углу отражения. Это полностью соответствует тому, что нам подсказывает интуиция. Луч, падающий почти параллельно поверхности, лишь слегка коснется ее и, отразившись под тупым углом, продолжит свой путь по низкой траектории, расположенной близко к поверхности. Луч, падающий почти отвесно, с другой стороны, отразится под острым углом, и направление отраженного луча будет близким к направлению падающего луча, как того и требует закон.

Закон отражения, как любой закон природы, был получен на основании наблюдений и опытов. Можно его вывести и теоретически — формально он является следствием принципа Ферма (но это не отменяет значимости его экспериментального обоснования).

Ключевым моментом в этом законе является то, что углы отсчитываются от перпендикуляра к поверхности в точке падения луча. Для плоской поверхности, например, плоского зеркала, это не столь важно, поскольку перпендикуляр к ней направлен одинаково во всех точках. Параллельно сфокусированный световой сигнал — например, свет автомобильной фары или прожектора, — можно рассматривать как плотный пучок параллельных лучей света. Если такой пучок отразится от плоской поверхности, все отраженные лучи в пучке отразятся под одним углом и останутся параллельными. Вот почему прямое зеркало не искажает ваш визуальный образ.

Однако имеются и кривые зеркала. Различные геометрические конфигурации поверхностей зеркал по-разному изменяют отраженный образ и позволяют добиваться различных полезных эффектов. Главное вогнутое зеркало телескопа-рефлектора позволяет сфокусировать в окуляре свет от далеких космических объектов. Выгнутое зеркало заднего вида автомобиля позволяет расширить угол обзора. А кривые зеркала в комнате смеха позволяют от души повеселиться, разглядывая причудливо искаженные отражения самих себя.

Закону отражения подчиняется не только свет. Любые электромагнитные волны — радио, СВЧ, рентгеновские лучи и т. п. — ведут себя в точности так же. Вот почему, например, и огромные принимающие антенны радиотелескопов, и тарелки спутникового телевидения имеют форму вогнутого зеркала — в них используется всё тот же принцип фокусировки поступающих параллельных лучей в точку.

Закон отражения света. Плоское зеркало

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке вы узнаете об отражении света и мы сформулируем основные законы отражения света. Ознакомимся с этими понятиями не только с точки зрения геометрической оптики, но и с точки зрения волновой природы света.

Как мы видим подавляющее большинство предметов вокруг нас, ведь они не являются источниками света? Ответ вам хорошо знаком, вы его получили еще в курсе физики 8 класса. Мы видим окружающий нас мир за счет отражения света.

Закон отражения

Для начала вспомним определение.

Когда световой луч падает на границу раздела двух сред, он испытывает отражение, то есть возвращается в исходную среду.

Обратите внимание на следующее: отражение света – это далеко не единственный возможный исход дальнейшего поведения падающего луча, частично он проникает в другую среду, то есть поглощается.

Поглощение света (абсорбция) – явление потери энергии световой волной, проходящей через вещество.

Построим падающий луч , отраженный луч и перпендикуляр в точку падения (рис. 1.).

Рис. 1. Падающий луч

Углом падения называется угол между падающим лучом и перпендикуляром (),

– угол скольжения.

Эти законы впервые были сформулированы Евклидом в его труде «Катоптрика». И с ними мы уже ознакомились в рамках программы физики 8 класса.

Законы отражения света

1. Падающий луч, отраженный луч и перпендикуляр в точку падения лежат в одной плоскости.

2. Угол падения равен углу отражения.

Из закона отражения света следует обратимость световых лучей. То есть если мы поменяем местами падающий луч и отраженный, то ничего не изменится с точки зрения траектории распространения светового потока.

Спектр применения закона отражения света весьма широк. Это и тот факт, с которого мы начали урок, что большинство предметов вокруг нас мы видим именно в отраженном свете (луну, дерево, стол). Еще одним хорошим примером использования отражения света являются зеркала и светоотражатели (катафоты).

Катафоты

Разберемся в принципе работы простого световозвращателя.

Катафот (от древнегреческого kata – приставка со значением усилия, fos – «свет»), световозвращатель, фликер (от англ. flick – «мигать») – устройство, предназначенное для отражения луча света в сторону источника с минимальным рассеиванием.

Каждый велосипедист знает, что передвижение в темное время суток без наличия катафотов может быть опасным.

Также фликеры используются в униформах дорожных рабочих, сотрудников ГИБДД.

Как ни удивительно, свойство катафота основано на простейших геометрических фактах, в частности на законе отражения.

Отражение луча от зеркальной поверхности происходит по закону: угол падения равен углу отражения. Рассмотрим плоский случай: два зеркала, образующих угол в 90 градусов. Луч, идущий в плоскости и попадающий на одно из зеркал, после отражения от второго зеркала уйдет ровно в том направлении, в котором пришел (см. рис. 2).

Рис. 2. Принцип действия углового катафота

Для получения такого эффекта в обычном трехмерном пространстве необходимо расположить три зеркала во взаимно перпендикулярных плоскостях. Возьмем уголок куба с краем в виде правильного треугольника. Луч, попавший на такую систему зеркал, после отражения от трех плоскостей уйдет параллельно пришедшему лучу в обратном направлении (см. рис. 3.).

Рис. 3. Уголковый отражатель

Произойдет световозвращение. Именно это простое устройство с его свойствами и называют уголковым отражателем.

Доказательство закона отражения

Рассмотрим отражение плоской волны (волна называется плоской, если поверхности равной фазы представляют собой плоскости) (рис. 1.)

Рис. 4. Отражение плоской волны

На рисунке – поверхность, и – два луча падающей плоской волны, они параллельны друг другу, а плоскость – волновая поверхность. Волновую поверхность отраженной волны можно получить, если провести огибающую вторичных волн, центры которых лежат на границе раздела сред.

Различные участки волновой поверхности достигают отражающей границы не одновременно. Возбуждение колебаний в точке начнется раньше, чем в точке на промежуток времени . В момент когда волна достигнет точки и в этой точке начнется возбуждение колебаний, вторичная волна с центром в точке (отраженный луч ) уже будет представлять собой полусферу радиусом . Исходя из того, что мы только что записали, этот радиус так же будет равен отрезку .

Теперь мы видим: , треугольники и – прямоугольные, а значит, . А в свою очередь, и есть угол падения . А – угол отражения . Следовательно, мы получаем, что угол падения равен углу отражения .

Итак, при помощи принципа Гюйгенса ми доказали закон отражения света. Получить это же доказательство можно, пользуясь принципом Ферма.

Виды отражения

В качестве примера (рис. 5.) изображено отражение от волнообразной, шероховатой поверхности.

Рис. 5. Отражение от шероховатой, волнообразной поверхности

На рисунке видно, что отраженные лучи идут в самых различных направлениях, Ведь направление перпендикуляра к точке падения для разного луча будет разным, соответственно, и угол падения, и угол отражения тоже будут разными.

Но что считать неровной поверхностью и какие из поверхностей можно назвать ровными?

Поверхность считается неровной, если размеры ее неровностей не меньше длины световых волн.

Поверхность, которая будет отражать лучи во все стороны равномерно, называется матовой. Таким образом, матовая поверхность гарантирует нам рассеянное или диффузное отражение, которое возникает вследствие неровностей, шероховатостей, царапин.

Поверхность, которая равномерно рассевает свет во все стороны, называется абсолютно матовой. В природе абсолютно матовую поверхность вы не встретите, тем не менее к ним очень близки поверхность снега, бумаги и фарфора.

Если же размер неровностей поверхности меньше длинны световой волны, то такая поверхность будет называться зеркальной.

При отражении от зеркальной поверхности параллельность пучка сохраняется (рис. 6.).

Рис. 6. Отражение от зеркальной поверхности

Приблизительно зеркальной является гладкая поверхность воды, стекла и полированного металла. Даже матовая поверхность может оказаться зеркальной, если изменить угол падения лучей.

В начале урока мы говорили о том, что часть падающего луча отражается, а часть поглощается. В физике есть величина, которая характеризует, какая доля энергии падающего луча отразилась, а какая поглотилась.

Альбедо

Альбедо – коэффициент, который показывает, какая доля энергии падающего луча отражается от поверхности, (от латинского albedo – «белизна») – характеристика диффузной отражательной способности поверхности.

Или иначе – это доля, выраженная в процентах отраженной радиации энергии от поступающей на поверхность.

Чем ближе альбедо к ста, тем больше энергия отражается от поверхности. Несложно догадаться, что коэффициент альбедо зависит от цвета поверхности, в частности, от белой поверхности энергия будет значительно лучше отражаться, чем от черной.

Самое большое альбедо для веществ у снега. Оно составляет порядка 70–90 %, в зависимости от его новизны и сорта. Именно поэтому снег медленно тает, пока он свежий, а точнее белый. Значения альбедо для других веществ, поверхностей указаны на рисунке 7.

Рис. 7. Значение альбедо для некоторых поверхностей

Плоское зеркало

Очень важным примером применения закона отражения света являются плоские зеркала – плоская поверхность, которая зеркально отражает свет. Такие зеркала есть у вас в доме.

Разберемся, как строить изображение предметов в плоском зеркале (рис. 8.).

Рис. 8. Построение изображения предмета в плоском зеркале

– точечный источник света, испускающий лучи в разные направления, возьмем два близких луча, падающих на плоское зеркало. Отраженные лучи пойдут так, будто они исходят из точки , которая симметрична точке относительно плоскости зеркала. Самое интересное начнется, когда отраженные лучи попадут нам в глаз: наш мозг сам достраивает расходящийся пучок, продолжая его за зеркало до точки

Нам кажется, что отраженные лучи исходят из точки .

Эта точка и служит изображением источника света . Конечно же, в реальности за зеркалом ничего не светится, это всего лишь иллюзия, поэтому эту точку называют мнимым изображением.

От расположения источника и размеров зеркала зависит область видения – область пространства, из которой видно изображение источника. Область видения задается краями зеркала и .

Например, в зеркало в ванной можно смотреться под определенным углом, если отойти от него вбок, то вы себя или предмет, который хотите рассмотреть, не увидите.

Для того чтобы построить изображение произвольного предмета в плоском зеркале, необходимо построить изображение каждой его точки. Но если мы знаем, что изображение точки симметрично относительно плоскости зеркала, то и изображение предмета будет симметричным относительно плоскости зеркала (рис. 9.)

Рис. 9. Симметричное отражение объекта относительно плоскости зеркала

Еще одним применением зеркалу является создание перископа, который является прибором для наблюдений из укрытия.

Заключение

На этом уроке мы не только ознакомились с законом отражения, но и доказали его с помощью уже известного нам принципа Гюйгенса. Кроме того, мы научились строить изображения предметов в плоском зеркале и характеризовать их.

Разбор задачи на закон отражения света

Ученики исследовали соотношение между скоростями автомобильчика и его изображения в плоском зеркале в системе отсчета, связанной с зеркалом.Проекция на ось вектора скорости, с которой движется изображение, в этой системе отсчета равна:

1.; 2. ; 3. ; 4. (см. рис. 10.)

Рис. 10. Иллюстрация к задаче

Вспомним, что изображение в плоском зеркале расположено симметрично объекту относительно зеркальной плоскости. Это значит, что если за время автомобиль совершит перемещение , то изображение, которое расположено симметрично, за то же время совершит перемещение и, следовательно, изображение отдаляется от зеркала со скоростью . Проекция на ось будет равна .

Ответ: 4.

Список литературы

1. Жилко В.В., Маркович Я.Г. Физика. 11 класс. – 2011.

2. Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика. 11 класс. Учебник.

3. Касьянов В.А. Физика, 11 класс. – 2004.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет портал «Фи­зи­ка для всех» (Источник)

2. Интернет портал Еди­ной кол­лек­ции циф­ро­вых об­ра­зо­ва­тель­ных ре­сур­сов (Источник)

3. Интернет портал «diplomivanov.narod.ru» (Источник)

Домашнее задание

1. Постройте изображения АВ в плоском зеркале

2. Постройте изображение в плоском зеркале

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Смотрите так же:

  • Правила прямого треугольника Прямоугольным треугольником называется треугольник, у которого один угол прямой (равен \(90^\circ\)). Стороны треугольника, образующие прямой угол, называются катетами , а сторона, противолежащая прямому углу, − гипотенузой . На приведенном рисунке стороны \(AC\) и \(BC\) являются катетами, сторона \(AB\) − гипотенузой. Длины катетов […]
  • Образец иска о разделе дома Исковое заявление о разделе жилого дома в натуре В Красноармейский районный суд Истец: Иванов Иван Иванович г. Волгоград, ул. Инженерная, д. ХХ Ответчик: Петрова Татьяна Викторовна г. Волгоград, ул. 33-х Героев, ХХ Исковое заявление о разделе домовладения в натуре Я являюсь собственником 1\2 доли домовладения, расположенного по адресу: […]
  • Приказ 541 н от 230710 Приказ Министерства труда и социальной защиты РФ от 9 апреля 2018 г. N 214н “О внесении изменений в Единый квалификационный справочник должностей руководителей, специалистов и служащих, раздел "Квалификационные характеристики должностей работников в сфере здравоохранения", утвержденный приказом Министерства здравоохранения и социального […]
  • Правила употребления ь после шипящих Азбучные истины Интерактивный диктант Учебник ГРАМОТЫ: пунктуация Имена и названия. Интерактивный тренажер Полезные ссылки Летнее чтение Запоминалки Цитаты о языке Скороговорки Пословицы и поговорки Учебник ГРАМОТЫ: орфография Выберите правильные варианты ответов. Для проверки выполненного задания нажмите кнопку […]
  • 3 группа пособие в рублях Пенсия инвалидам 1-й группы в 2018 году Людей, получивших статус инвалидности, сегодня становится все больше и больше. Это связано с халатностью работодателей, не обеспечивших безопасность на рабочем месте, врожденными особенностями человека, авариями, заболеваниями и прочим. Застраховать свою жизнь от какого-либо происшествия, которое […]
  • Прокурор курганской области ткачёв игорь Ткачёв Игорь Викторович Ткачёв Игорь Викторович родился в 1963 году в г. Невинномысске Ставропольского края. 2001-2004 – старший следователь по особо важным делам следственного отдела управления Генеральной прокуратуры Российской Федерации по расследованию преступлений в сфере федеральной безопасности и межнациональных отношений на […]