Нормальный закон в excel

Диаграмма нормального распределения (Гаусса) в Excel

Требуется построить диаграмму стандартного нормального распределения Гаусса (стандартное нормальное распределение имеет М = 0 и = 1), используя функцию НОРМСТРАСП.

1. В ячейку A3 введем символ х, а в ячейку ВЗ — символ функции плотности вероятности f(x).

2. Вычислим нижнюю М — За границу диапазона значений х, для чего установим курсор в ячейку С2 и введем формулу =0-3*1, а также верхнюю границу — в ячейку Е2 введем формулу =0+3*1.

3. Скопируем формулу из ячейки С2 в ячейку А4, полученное в ячейке А4 значение нижней границы будет началом последовательности арифметической прогрессии.

4. Создадим последовательность значений х в требуемом диапазоне, для чего установим курсор в ячейку А4 и выполним команду меню Правка/Заполнить/Прогрессия.

5. В открывшемся окне диалога Прогрессия установим переключатели арифметическая, по столбцам, в поле Шаг введем значение 0,5, а в поле Предельное значение — число, равное верхней границе диапазона.

Оглавление:

Функция НОРМРАСПР в EXCEL

6. Щелкнем на кнопке ОК. В диапазоне А4:А16 будет сформирована последовательность значений х.

7. Установим курсор в ячейку В4 и выполним команду меню Вставка/Функция. В открывшемся окне Мастер функций выберем категорию Статистические, а в списке функций — НОРМРАСП.

8. Установим значения параметров функции НОРМРАСП: для параметра х установим ссылку на ячейку А4, для параметра Среднее — введем число 0, для параметра Стандартное_откл — число 1, для параметра Интегральное — число 0 (весовая).

Диаграмма нормального интегрального распределения в EXCEL

9. Используя маркер буксировки, скопируем полученную формулу в диапазон ячеек В5:В16.

10. Выделим диапазон полученных табличных значений функции f(х) (ВЗ:В16) и выполним команду меню Вставка/Диаграмма. В окне Мастер диаграмм во вкладке Стандартные выберем График, а в поле Вид — вид графика, щелкнем на кнопке Далее.

11. В окне Мастер диаграмм (шаг 2) выберем закладку Ряд. В поле Подписи оси х укажем ссылку на диапазон, содержащий значения х (А4:А16). Щелкнем на кнопке Далее.
В окне Мастер диаграмм (шаг 3) введем подписи: Название диаграммы, Ось х, Ось у. Щелкнем на кнопке Готово. На рабочий лист будет выведена диаграмма плотности вероятности .

Мало ли что я обещал гоям?
Российскую пенсию будут получать только израильтяне!
Мой кошелёк — Минц всё равно уже вывез деньги ПФ за рубеж.

НОРМРАСП (функция НОРМРАСП)

Возвращает нормальную функцию распределения для указанного среднего и стандартного отклонения. Эта функция очень широко применяется в статистике, в том числе при проверке гипотез.

Важно: Эта функция была заменена одной или несколькими новыми функциями, которые обеспечивают более высокую точность и имеют имена, лучше отражающие их назначение. Хотя эта функция все еще используется для обеспечения обратной совместимости, она может стать недоступной в последующих версиях Excel, поэтому мы рекомендуем использовать новые функции.

Дополнительные сведения о новом варианте этой функции см. в статье Функция НОРМ.РАСП.

Аргументы функции НОРМРАСП описаны ниже.

x Обязательный. Значение, для которого строится распределение.

Среднее Обязательный. Среднее арифметическое распределения.

Стандартное_откл Обязательный. Стандартное отклонение распределения.

Интегральная Обязательный. Логическое значение, определяющее форму функции. Если аргумент «интегральная» имеет значение ИСТИНА, функция НОРМРАСП возвращает интегральную функцию распределения; если этот аргумент имеет значение ЛОЖЬ, возвращается весовая функция распределения.

Если аргумент «среднее» или «стандартное_откл» не является числом, функция НОРМРАСП возвращает значение ошибки #ЗНАЧ!.

Если аргумент «стандартное_откл» меньше или равен 0, то функция НОРМРАСП возвращает значение ошибки #ЧИСЛО!.

Если среднее = 0, стандартное_откл = 1 и интегральная = ИСТИНА, то функция НОРМРАСП возвращает стандартное нормальное распределение, т. е. НОРМСТРАСП.

Уравнение для плотности нормального распределения (аргумент «интегральная» содержит значение ЛОЖЬ) имеет следующий вид:

Если аргумент «интегральная» имеет значение ИСТИНА, формула описывает интеграл с пределами от минус бесконечности до x.

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Нормальный закон в excel

Менеджерами не рождаются, менеджерами становятся

Нормальное распределение. Построение графика в Excel. Концепция шести сигм

Наверное, не все знают, что в Excel есть встроенная функция для построения нормального распределения. Графики нормального распределения часто используются для демонстрации идей статистической обработки данных.

Функция НОРМРАСП имеет следующий синтаксис:

НОРМРАСП (Х; среднее; стандартное_откл; интегральная)

Х — аргумент функции; фактически НОРМРАСП можно трактовать как y=f(x); при этом функция возвращает вероятность реализации события Х

Среднее (µ) — среднее арифметическое распределения; чем дальше Х от среднего, тем ниже вероятность реализации такого события

Стандартное_откл (σ) — стандартное отклонение распределения; мера кучности; чем меньше σ, тем выше вероятность у тех Х, которые расположены ближе к среднему

Интегральная — логическое значение, определяющее форму функции. Если «интегральная» имеет значение ИСТИНА, функция НОРМРАСП возвращает интегральную функцию распределения, тот есть суммарную вероятность всех событий для аргументов от -∞ до Х; если «интегральная» имеет значение ЛОЖЬ, возвращается вероятность реализации события Х, точнее говоря, вероятность событий находящихся в некотором диапазоне вокруг Х

Например, для µ=0 имеем:

Скачать заметку в формате Word, пример в формате Excel

Здесь по оси абсцисс единица измерения – σ, или (что то же самое), можно сказать, что график построен для σ = 1. То есть, «-2» на графике означает -2σ. По оси ординат шкала убрана умышленно, так как она лишена смысла. Точнее говоря, высота кривой зависит от плотности точек на оси абсцисс, по которым мы строим график. Например, если на интервал от 0 до 1σ приходится 10 точек, то высота в максимуме составит 4%, а если 20 точек – 2%. Здесь проценты означают вероятность попадания случайной величины в узкий диапазон окрестности точки на оси абсцисс. Зато имеет смысл площадь под кривой на определенном интервале. И эта площадь не зависит от плотности точек. Так, например, площадь под кривой на интервале от 0 до 1σ составляет 34,13%. Это значение можно интерпретировать следующим образом: с вероятностью 68,26% случайная величина Х попадет в диапазон µ ± σ.

Теперь, наверное, вам будет лучше понятен смысл выражения «качество шести сигм». Оно означает, что производство налажено таким образом, что случайная величина Х (например, диаметр вала) находясь в диапазон µ ± 6σ, всё еще удовлетворяет техническим условиям (допускам). Это достигается за счет значительного уменьшения сигмы, то есть случайная величина Х очень близка к нормативному значению µ. На графике ниже представлено три ситуации, когда границы допуска остаются неизменными, а благодаря повышению качества (уменьшению вариабельности, сужению сигма) доля брака сокращается:

На первом рисунке только 1,5σ попадают в границы допуска, то есть только 86,6% деталей являются годными. На втором рисунке уже 3σ попадают в границы допуска, то есть 99,75% являются годными. Но всё еще 25 деталей из каждых 10 000 произведенных являются браком. На третьем рисунке целых 6σ попадают в границы допуска, то есть в брак попадут только две детали на миллиард изготовленных!

Вообще-то говоря, измерение качества в терминах сигм использует не совсем нормальное распределение. ? Вот что пишет на эту тему Википедия:

Опыт показывает, что показатели процессов имеют тенденцию изменяться с течением времени. В результате со временем в промежуток между границами поля допуска будет входить меньше, чем было установлено первоначально. Опытным путём было установлено, что изменение параметров во времени можно учесть с помощью смещения в 1,5 сигма. Другими словами, с течением времени длина промежутка между границами поля допуска под кривой нормального распределения уменьшается до 4,5 сигма вследствие того, что среднее процесса с течением времени смещается и/или среднеквадратическое отклонение увеличивается.

Широко распространённое представление о «процессе шесть сигма» заключается в том, что такой процесс позволяет получить уровень качества 3,4 дефектных единиц на миллион готовых изделий при условии, что длина под кривой слева или справа от среднего будет соответствовать 4,5 сигма (без учёта левого или правого конца кривой за границей поля допуска). Таким образом, уровень качества 3,4 дефектных единиц на миллион готовых изделий соответствует длине промежутка 4,5 сигма, получаемых разницей между 6 сигма и сдвигом в 1,5 сигма, которое было введено, чтобы учесть изменение показателей с течением времени. Такая поправка создана для того, чтобы предупредить неправильною оценку уровня дефектности, встречающееся в реальных условиях.

С моей точки зрения, не вполне внятное объяснение. Тем не менее, во всем мире принята следующая таблица соответствия числа дефектов и уровня качества в сигмах:

Распределение вероятностей – одно из центральных понятий теории вероятности и математической статистики. Определение распределения вероятности равносильно заданию вероятностей всех СВ, описывающих некоторое случайное событие. Распределение вероятностей некоторой СВ, возможные значения которой x 1, x 2, … xn образуют выборку, задается указанием этих значений и соответствующих им вероятностей p 1, p 2,… pn . ( pn должны быть положительны и в сумме давать единицу).

В данной лабораторной работе будут рассмотрены и построены с помощью MS Excel наиболее распространенные распределения вероятности: биномиальное и нормальное.

1 Биномиальное распределение

Представляет собой распределение вероятностей числа наступлений некоторого события («удачи») в n повторных независимых испытаниях, если при каждом испытании вероятность наступления этого события равна p . При этом распределении разброс вариант (есть или нет события) является следствием влияния ряда независимых и случайных факторов.

П римером практического использования биномиального распределения может являться контроль качества партии фармакологического препарата. Здесь требу­ется подсчитать число изделий (упаковок), не соответствующих требованиям. Все причины, влияющие на качество препарата, принимаются одинаково вероятными и не зависящими друг от друга. Сплошная проверка качества в этой ситуации не возможна, поскольку изделие, прошедшее испытание, не подлежит дальнейшему использованию. Поэтому для контроля из партии наудачу выбирают определенное количество образцов изделий ( n ). Эти образцы всестороннее проверяют и регистрируют число бракованных изделий ( k ). Теоретически число бракованных изделий может быть любым, от 0 до n .

В Excel функция БИНОМРАСП применяется для вычисления вероятности в задачах с фиксированным числом тестов или испытаний, когда результатом любого испытания может быть только успех или неудача.

Функция использует следующие параметры:

БИНОМРАСП (число_успехов; число_испытаний; вероятностъ_успеха; интегральная) , где

число_успехов — это количество успешных испытаний;

число_испытаний — это число независимых испытаний (число успехов и число испытаний должны быть целыми числами);

вероятность_ успеха — это вероятность успеха каждого испытания;

интегральный — это логическое значение, определяющее форму функции.

Если данный параметр имеет значение ИСТИНА (=1), то считается интегральная функция распределения (вероятность того, что число успешных испытаний не менее значения число_ успехов);

если этот параметр имеет значение ЛОЖЬ (=0), то вычисляется значение функ­ции плотности распределения (вероятность того, что число успешных испытаний в точности равно значению аргумента число_ успехов).

Пример 1. Какова вероятность того, что трое из четырех новорож­денных будут мальчиками?

1. Устанавливаем табличный курсор в свободную ячейку, например в А1. Здесь должно оказаться значение искомой вероятности.

2. Для получения значения вероятности воспользуемся специальной функцией: нажимаем на панели инструментов кнопку Вставка функции ( fx ) .

3. В появившемся диалоговом окне Мастер функций — шаг 1 из 2 слева в поле Катего­рия указаны виды функций. Выбираем Статистическая. Справа в поле Функция выбираем функцию БИНОМРАСП и нажимаем на кнопку ОК.

Появляется диалоговое окно функции. В поле Число_ s вводим с клавиатуры количество успешных испытаний (3). В поле Испытания вво­дим с клавиатуры общее количество испытаний (4). В рабочее поле Вероятность_ s вводим с клавиатуры вероятность успеха в отдельном испытании (0,5). В поле Интегральный вводим с клавиатуры вид функции распределения — интегральная или весовая (0). Нажимаем на кнопку ОК.

В ячейке А1 появляется искомое значение вероятности р = 0,25. Ровно 3 мальчика из 4 новорожденных могут появиться с вероят­ностью 0,25.

Если изменить формулировку условия задачи и выяснить вероятность того, что появится не более трех мальчиков, то в этом случае в рабочее поле Интегральный вводим 1 (вид функции распределения интегральный). Вероятность этого события будет равна 0,9375.

Задания для самостоятельной работы

1. Какова вероятность того, что восемь из десяти студентов, сдающих зачет, получат «незачет». (0,04)

2 . Нормальное распределение

Нормальное распределение — это совокупность объектов, в кото­ рой крайние значения некоторого признака — наименьшее и наибольшее — появ­ ляются редко; чем ближе значение признака к математическому ожиданию, тем чаще оно встречается. Например, распределение студентов по их весу приближа­ется к нормальному распределению. Это распределение имеет очень широкий круг приложений в статистике, включая проверку гипотез.

Диаграмма нормального распределения симметрична относительно точки а (математического ожидания). Ме­диана нормального распределения равна тоже а. При этом в точке а функция f(x) достигает своего максимума, который равен

В Excel для вычисления значений нормального распределения используются фун­кция НОРМРАСП, которая вычисляет значения вероятности нормальной функции распределения для указанного среднего и стандартного отклонения.

Функция имеет параметры:

НОРМРАСП (х; среднее; стандартное_откл; интегральная) , где:

х — значения выборки, для которых строится распределение;

среднее — среднее арифметическое выборки;

стандартное_откл — стандартное отклонение распределения;

интегральный — логическое значение, определяющее форму функции. Если интегральная имеет значение ИСТИНА(1), то функция НОРМРАСП возвращает интег­ральную функцию распределения; если это аргумент имеет значение ЛОЖЬ (0), то вычисляет значение функция плотности распределения.

Если среднее = 0 и стандартное_откл = 1, то функция НОРМРАСП возвращает стан­дартное нормальное распределение.

Пример 2 . Построить график нормальной функции распределения f ( x ) при x , меняющемся от 19,8 до 28,8 с шагом 0,5, a =24,3 и

1. В ячейку А1 вводим символ случайной величины х, а в ячейку B 1 — символ фун­кции плотности вероятности — f ( x ) .

2. Вводим в диапазон А2:А21 значе­ния х от 19,8 до 28,8 с шагом 0,5. Для этого воспользуемся маркером автозаполнения: в ячейку А2 вводим левую границу диапазона (19,8), в ячейку A3 левую границу плюс шаг (20,3). Выделяем блок А2:А3. Затем за правый нижний угол протягиваем мышью до ячейки А21 (при нажатой левой кнопке мыши).

3. Устанавливаем табличный курсор в ячейку В2 и для получения значения веро­ятности воспользуемся специальной функцией — нажимаем на панели инстру­ментов кнопку Вставка функции ( fx ) . В появившемся диалоговом окне Мастер функций — шаг 1 из 2 слева в поле Категория указаны виды функций. Выбираем Статистическая. Справа в поле Функция выбираем функцию НОРМРАСП. Нажимаем на кнопку ОК.

4. Появляется диалоговое окно НОРМРАСП. В рабочее поле X вводим адрес ячейки А2 щелчком мыши на этой ячейке. В рабочее поле Среднее вводим с клавиатуры значение математиче­ского ожидания (24,3). В рабочее поле Стандартное_откл вводим с клавиатуры значение среднеквадратического отклонения (1,5). В ра­бочее поле Интегральная вводим с клавиатуры вид функции распределения (0). Нажимаем на кнопку ОК.

5. В ячейке В2 появляется вероятность р = 0,002955. Указателем мыши за правый нижний угол табличного курсора протягиванием (при нажатой левой кнопке мыши) из ячейки В2 до В21 копируем функцию НОРМРАСП в диапазон В3:В21.

6. По полученным данным строим искомую диаграмму нормальной функции рас­пределения. Щелчком указателя мыши на кнопке на панели инструментов вызы­ваем Мастер диаграмм. В появившемся диалоговом окне выбираем тип диаграммы График, вид — левый верхний. После нажатия кнопки Далее указываем диапазон данных — В1:В21 (с помощью мыши). Проверяем, положение переключателя Ряды в: столбцах. Выбираем закладку Ряд и с помощью мыши вводим диапазон подписей оси X: А2:А21. Нажав на кнопку Далее, вводим названия осей Х и У и нажимаем на кнопку Готово.

Рис. 1 График нормальной функции распределения

Получен приближенный график нормальной функции плотности распределения (см. рис.1).

1. Построить график нормальной функции плотности распределения f ( x ) при x , меняющемся от 20 до 40 с шагом 1 при

3. Генерация случайных величин

Еще одним аспектом использования законов распределения вероятностей являет­ ся генерация случайных величин. Бывают ситуации, когда необходимо получить пос­ледовательность случайных чисел. Это, в частности, требуется для моделирования объектов, имеющих случайную природу, по известному распределению вероятно­ стей.

Процедура генерации случайных величин используется для заполнения диапазона ячеек случайными числами, извлеченными из одного или не­ скольких распределений.

В MS Excel для генерации СВ используются функции из категории Математические :

СЛЧИС () – выводит на экран равномерно распределенные случайные числа больше или равные 0 и меньшие 1;

СЛУЧМЕЖДУ (ниж_граница; верх_граница) – выводит на экран случайное число, лежащее между про­ извольными заданными значениями.

В случае использования процедуры Генерация случайных чисел из пакета Анализа необходимо запол­нить следующие поля:

число переменных вводится число столбцов значений, которые необходимо разместить в выходном диапазоне. Если это число не введено, то все столбцы в выходном диапазоне будут заполнены;

число случайных чисел вводится число случайных значений, которое необ­ ходимо вывести для каждой переменной, если число случайных чисел не будет введе­ но, то все строки выходного диапазона будут заполнены;

— в поле распределение необходимо выбрать тип распределения, которое следует использовать для генерации случайных переменных:

1. равномерное характеризуется вер x ней и нижней границами. Переменные из­ влекаются с одной и той же вероятностью для всех значений интервала.

2. нормальное — характеризуется средним значением и стандартным отклонени­ ем. Обычно для этого распределения используют среднее значе­ ние 0 и стандартное отклонение 1.

3. биномиальное — характеризуется вероятностью успеха (величина р) для неко­ торого числа попыток. Например, можно сгенерировать случайные двухальтер нативные переменные по числу попыток, сумма которых будет биномиальной случайной переменной;

4. дискретное — характеризуется значением СВ и соответствующим ему интервалом вероятности, диапазон должен состоять из двух столбцов: левого, содержаще­ го значения, и правого, содержащего вероятности, связанные со значением в дан­ ной строке. Сумма вероятностей должна быть равна 1;

— в поле случайное рассеивание вводится произвольное значение, для которого необ­ ходимо генерировать случайные числа. Впоследствии можно снова использовать это значение для получения тех же самых случайных чисел.

выходной диапазон вводится ссылка на левую верхнюю ячейку выходного диапазона. Размер выходного диапазона будет определен автоматически, и на эк­ ран будет выведено сообщение в случае возможного наложения выходного диапа­ зона на исходные данные.

Пример 3. Повар столовой может готовить 4 различных первых блюда (уха, щи, борщ, грибной суп). Необходимо составить меню на месяц, так чтобы первые блюда чередовались в случайном порядке.

1. Пронумеруем первые блюда по порядку: 1 — уха, 2 — щи, 3 — борщ, 4 — грибной суп. Введем числа 1-4 в диапазон А2:А5 рабочей таблицы.

2. Укажем желаемую вероятность появления каждого первого блюда. Пусть все блюда будут равновероятны (р=1/4). Вводим число 0,25 в диапазон В2:В5.

3. В меню Сервис выбираем пункт Анализ данных и далее указываем строку Генерация случайных чисел. В появившемся диалоговом окне указываем Число перемен ных1, Число случайных чисел30 (количество дней в месяце). В поле Распре деление указываем Дискретное (только натуральные числа). В поле Входной интервал значений и вероятностей вводим (мышью) диапазон, содержащий номера супов и их вероятности. – А2:В5.

4. Указываем выходной диапазон и нажимаем ОК. В столбце С появляются случайные числа: 1, 2, 3, 4.

Задание для самостоятельной работы

1. Сформировать выборку из 10 случайных чисел, лежащих в диапазоне от 0 до 1.

2. Сформировать выборку из 20 случайных чисел, лежащих в диапазоне от 5 до 20.

3. Пусть спортсмену необходимо составить график тренировок на 10 дней, так чтобы дистанция, пробегаемая каждый день, случайным образом менялась от 5 до 10 км.

4. Составить расписание внеклассных мероприятий на неделю для случайного проведения: семинаров, интеллектуальных игр, КВН и спец. курса.

5. Составить расписание на месяц для случайной демонстрации на телевидении одного из четырех рекламных роликов турфирмы. Причем вероятность появления рекламного ролика №1 должна быть в два раза выше, чем остальных рекламных роликов.

Проверка распределения на нормальность в MS EXCEL

Построение графика проверки распределения на нормальность (Normal Probability Plot) является графическим методом определения соответствия значений выборки нормальному распределению.

Предположим, что имеется некий набор данных. Требуется оценить, соответствует ли данная выборка нормальному распределению.

Рассмотренный ниже графический метод основан на субъективной визуальной оценке данных. Объективным же подходом является, например, анализ степени согласия гипотетического распределения с наблюдаемыми данными (goodness-of-fit test), который рассмотрен в статье Проверка простых гипотез критерием Пирсона ХИ-квадрат.

Из-за наличия неустранимой статистической ошибки выборки, присущей случайной величине, невозможно однозначно ответить на вопрос «Взята ли данная выборка из нормального распределения или нет». Поэтому, рассмотренный графический метод, скорее, дает ответ на вопрос «Разумно ли предположение, что оцениваемая выборка взята из нормального распределения»?

Рассмотрим алгоритм построения графика проверки распределения на нормальность (Normal Probability Plot):

  • Отсортируйте значения выборки по возрастанию (значения выборки xj будут отложены по горизонтальной оси Х);
  • Каждому значению xjвыборки поставьте в соответствие значения (j-0,5)/n, где n – количество значений в выборке, j – порядковый номер значения от 1 до n. Этот массив будет содержать значения от 0,5/n до (n-0,5)/n. Таким образом, диапазон от 0 до 1 будет разбит на равномерные отрезки. Этот диапазон соответствует вероятности наблюдения значений случайной величины Z Похожие задачи

Нормальное распределение. Непрерывные распределения в MS EXCEL

Рассмотрим Нормальное распределение. С помощью функции MS EXCEL НОРМ.РАСП() построим графики функции распределения и плотности вероятности. Сгенерируем массив случайных чисел, распределенных по нормальному закону, произведем оценку параметров распределения, среднего значения и стандартного отклонения.

Нормальное распределение (также называется распределением Гаусса) является самым важным как в теории, так в приложениях системы контроля качества. Важность значения Нормального распределения (англ. Normal distribution) во многих областях науки вытекает из Центральной предельной теоремы теории вероятностей.

Определение: Случайная величина x распределена по нормальному закону, если она имеет плотность распределения:

СОВЕТ: Подробнее о Функции распределения и Плотности вероятности см. статью Функция распределения и плотность вероятности в MS EXCEL.

Нормальное распределение зависит от двух параметров: μ (мю) — является математическим ожиданием (средним значением случайной величины), и σ (сигма) — является стандартным отклонением (среднеквадратичным отклонением). Параметр μ определяет положение центра плотности вероятности нормального распределения, а σ — разброс относительно центра (среднего).

Примечание: О влиянии параметров μ и σ на форму распределения изложено в статье про Гауссову кривую, а в файле примера на листе Влияние параметров можно с помощью элементов управления Счетчик понаблюдать за изменением формы кривой.

Нормальное распределение в MS EXCEL

В MS EXCEL, начиная с версии 2010, для Нормального распределения имеется функция НОРМ.РАСП() , английское название — NORM.DIST(), которая позволяет вычислить плотность вероятности (см. формулу выше) и интегральную функцию распределения (вероятность, что случайная величина X, распределенная по нормальному закону, примет значение меньше или равное x). Вычисления в последнем случае производятся по следующей формуле:

Вышеуказанное распределение имеет обозначение N(μ; σ). Так же часто используют обозначение через дисперсию N(μ; σ 2 ).

Примечание: До MS EXCEL 2010 в EXCEL была только функция НОРМРАСП() , которая также позволяет вычислить функцию распределения и плотность вероятности. НОРМРАСП() оставлена в MS EXCEL 2010 для совместимости.

Стандартное нормальное распределение

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием μ=0 и дисперсией σ=1. Вышеуказанное распределение имеет обозначение N(0;1).

Примечание: В литературе для случайной величины, распределенной по стандартному нормальному закону, закреплено специальное обозначение z.

Любое нормальное распределение можно преобразовать в стандартное через замену переменной z=(x-μ)/σ. Этот процесс преобразования называется стандартизацией.

Примечание: В MS EXCEL имеется функция НОРМАЛИЗАЦИЯ() , которая выполняет вышеуказанное преобразование. Хотя в MS EXCEL это преобразование называется почему-то нормализацией. Формулы =(x-μ)/σ и =НОРМАЛИЗАЦИЯ(х;μ;σ) вернут одинаковый результат.

В MS EXCEL 2010 для стандартного нормального распределения имеется специальная функция НОРМ.СТ.РАСП() и ее устаревший вариант НОРМСТРАСП() , выполняющий аналогичные вычисления.

Продемонстрируем, как в MS EXCEL осуществляется процесс стандартизации нормального распределения N(1,5; 2).

Для этого вычислим вероятность, что случайная величина, распределенная по нормальному закону N(1,5; 2), меньше или равна 2,5. Формула выглядит так: =НОРМ.РАСП(2,5; 1,5; 2; ИСТИНА) =0,691462. Сделав замену переменной z=(2,5-1,5)/2=0,5, запишем формулу для вычисления Стандартного нормального распределения: =НОРМ.СТ.РАСП(0,5; ИСТИНА) =0,691462.

Естественно, обе формулы дают одинаковые результаты (см. файл примера лист Пример ).

Обратите внимание, что стандартизация относится только к интегральной функции распределения (аргумент интегральная равен ИСТИНА), а не к плотности вероятности.

Примечание: В литературе для функции, вычисляющей вероятности случайной величины, распределенной по стандартному нормальному закону, закреплено специальное обозначение Ф(z). В MS EXCEL эта функция вычисляется по формуле
=НОРМ.СТ.РАСП(z;ИСТИНА) . Вычисления производятся по формуле

В силу четности функции плотности стандартного нормального распределения f(x), а именно f(x)=f(-х), функция стандартного нормального распределения обладает свойством Ф(-x)=1-Ф(x).

Обратные функции

Функция НОРМ.СТ.РАСП(x;ИСТИНА) вычисляет вероятность P, что случайная величина Х примет значение меньше или равное х. Но часто требуется провести обратное вычисление: зная вероятность P, требуется вычислить значение х. Вычисленное значение х называется квантилем стандартного нормального распределения.

В MS EXCEL для вычисления квантилей используют функцию НОРМ.СТ.ОБР() и НОРМ.ОБР() .

Графики функций

В файле примера приведены графики плотности распределения вероятности и интегральной функции распределения.

Как известно, около 68% значений, выбранных из совокупности, имеющей нормальное распределение, находятся в пределах 1 стандартного отклонения (σ) от μ(среднего или математического ожидания); около 95% — в пределах 2-х σ, а в пределах 3-х σ находятся уже 99% значений. Убедиться в этом для стандартного нормального распределения можно записав формулу:

которая вернет значение 68,2689% — именно такой процент значений находятся в пределах +/-1 стандартного отклонения от среднего (см. лист График в файле примера ).

В силу четности функции плотности стандартного нормального распределения: f(x)=f(-х), функция стандартного нормального распределения обладает свойством F(-x)=1-F(x). Поэтому, вышеуказанную формулу можно упростить:

Для произвольной функции нормального распределения N(μ; σ) аналогичные вычисления нужно производить по формуле:

Вышеуказанные расчеты вероятности требуются для построения доверительных интервалов.

Примечание: Для построения функции распределения и плотности вероятности можно использовать диаграмму типа График или Точечная (со сглаженными линиями и без точек). Подробнее о построении диаграмм читайте статью Основные типы диаграмм.

Примечание: Для удобства написания формул в файле примера созданы Имена для параметров распределения: μ и σ.

Генерация случайных чисел

С помощью надстройки Пакет анализа можно сгенерировать случайные числа, распределенные по нормальному закону.

СОВЕТ: О надстройке Пакет анализа можно прочитать в статье Надстройка Пакет анализа MS EXCEL.

Сгенерируем 3 массива по 100 чисел с различными μ и σ. Для этого в окне Генерация случайных чисел установим следующие значения для каждой пары параметров:

Примечание: Если установить опцию Случайное рассеивание (Random Seed), то можно выбрать определенный случайный набор сгенерированных чисел. Например, установив эту опцию равной 25, можно сгенерировать на разных компьютерах одни и те же наборы случайных чисел (если, конечно, другие параметры распределения совпадают). Значение опции может принимать целые значения от 1 до 32 767. Название опции Случайное рассеивание может запутать. Лучше было бы ее перевести как Номер набора со случайными числами.

В итоге будем иметь 3 столбца чисел, на основании которых можно, оценить параметры распределения, из которого была произведена выборка: μ и σ. Оценку для μ можно сделать с использованием функции СРЗНАЧ() , а для σ – с использованием функции СТАНДОТКЛОН.В() , см. файл примера лист Генерация .

Примечание: Для генерирования массива чисел, распределенных по нормальному закону, можно использовать формулу =НОРМ.ОБР(СЛЧИС();μ;σ) . Функция СЛЧИС() генерирует непрерывное равномерное распределение от 0 до 1, что как раз соответствует диапазону изменения вероятности (см. файл примера лист Генерация ).

Задача1. Компания изготавливает нейлоновые нити со средней прочностью 41 МПа и стандартным отклонением 2 МПа. Потребитель хочет приобрести нити с прочностью не менее 36 МПа. Рассчитайте вероятность, что партии нити, изготовленные компанией для потребителя, будут соответствовать требованиям или превышать их.
Решение1: = 1-НОРМ.РАСП(36;41;2;ИСТИНА)

Задача2. Предприятие изготавливает трубы, средний внешний диаметр которых равен 20,20 мм, а стандартное отклонение равно 0,25мм. Согласно техническим условиям, трубы признаются годными, если диаметр находится в пределах 20,00+/- 0,40 мм. Какая доля изготовленных труб соответствует ТУ?
Решение2: = НОРМ.РАСП(20,00+0,40;20,20;0,25;ИСТИНА)- НОРМ.РАСП(20,00-0,40;20,20;0,25)
На рисунке ниже, выделена область значений диаметров, которая удовлетворяет требованиям спецификации.

Решение приведено в файле примера лист Задачи .

Задача3. Предприятие изготавливает трубы, средний внешний диаметр которых равен 20,20 мм, а стандартное отклонение равно 0,25мм. Внешний диаметр не должен превышать определенное значение (предполагается, что нижняя граница не важна). Какую верхнюю границу в технических условиях необходимо установить, чтобы ей соответствовало 97,5% всех изготавливаемых изделий?
Решение3: = НОРМ.ОБР(0,975; 20,20; 0,25) =20,6899 или
= НОРМ.СТ.ОБР(0,975)*0,25+20,2 (произведена «дестандартизация», см. выше)

Задача 4. Нахождение параметров нормального распределения по значениям 2-х квантилей (или процентилей).
Предположим, известно, что случайная величина имеет нормальное распределение, но не известны его параметры, а только 2-я процентиля (например, 0,5-процентиль, т.е. медиана и 0,95-я процентиль). Т.к. известна медиана, то мы знаем среднее, т.е. μ. Чтобы найти стандартное отклонение нужно использовать Поиск решения.
Решение приведено в файле примера лист Задачи .

Примечание: До MS EXCEL 2010 в EXCEL были функции НОРМОБР() и НОРМСТОБР() , которые эквивалентны НОРМ.ОБР() и НОРМ.СТ.ОБР() . НОРМОБР() и НОРМСТОБР() оставлены в MS EXCEL 2010 и выше только для совместимости.

Линейные комбинации нормально распределенных случайных величин

Известно, что линейная комбинация нормально распределённых случайных величин x(i) с параметрами μ(i) и σ(i) также распределена нормально. Например, если случайная величина Y=x(1)+x(2), то Y будет иметь распределение с параметрами μ(1)+ μ(2) и КОРЕНЬ(σ(1)^2+ σ(2)^2). Убедимся в этом с помощью MS EXCEL.

С помощью надстройки Пакет анализа сгенерируем 2 массива по 100 чисел с различными μ и σ.

Теперь сформируем массив, каждый элемент которого является суммой 2-х значений, взятых из каждого массива.

С помощью функций СРЗНАЧ() и СТАНДОТКЛОН.В() вычислим среднее и дисперсию получившейся выборки и сравним их с расчетными.

Кроме того, построим График проверки распределения на нормальность (Normal Probability Plot), чтобы убедиться, что наш массив соответствует выборке из нормального распределения.

Прямая линия, аппроксимирующая полученный график, имеет уравнение y=ax+b. Наклон кривой (параметр а) может служить оценкой стандартного отклонения, а пересечение с осью y (параметр b) – среднего значения.

Для сравнения сгенерируем массив напрямую из распределения N(μ(1)+ μ(2); КОРЕНЬ(σ(1)^2+ σ(2)^2)).

Как видно на рисунке ниже, обе аппроксимирующие кривые достаточно близки.

В качестве примера можно провести следующую задачу.

Задача. Завод изготавливает болты и гайки, которые упаковываются в ящики парами. Пусть известно, что вес каждого из изделий является нормальной случайной величиной. Для болтов средний вес составляет 50г, стандартное отклонение 1,5г, а для гаек 20г и 1,2г. В ящик фасуется 100 пар болтов и гаек. Вычислить какой процент ящиков будет тяжелее 7,2 кг.
Решение. Сначала переформулируем вопрос задачи: Вычислить какой процент пар болт-гайка будет тяжелее 7,2кг/100=72г. Учитывая, что вес пары представляет собой случайную величину = Вес(болта) + Вес(гайки) со средним весом (50+20)г, и стандартным отклонением =КОРЕНЬ(СУММКВ(1,5;1,2)) , запишем решение
= 1-НОРМ.РАСП(72; 50+20; КОРЕНЬ(СУММКВ(1,5;1,2));ИСТИНА)
Ответ: 15% (см. файл примера лист Линейн.комбинация )

Аппроксимация Биномиального распределения Нормальным распределением

Если параметры Биномиального распределения B(n;p) находятся в пределах 0,1 10, то Биномиальное распределение можно аппроксимировать Нормальным распределением.

При значениях λ>15, Распределение Пуассона хорошо аппроксимируется Нормальным распределением с параметрами: μ, σ 2 =λ.

Подробнее о связи этих распределений, можно прочитать в статье Взаимосвязь некоторых распределений друг с другом в MS EXCEL. Там же приведены примеры аппроксимации, и пояснены условия, когда она возможна и с какой точностью.

СОВЕТ : О других распределениях MS EXCEL можно прочитать в статье Распределения случайной величины в MS EXCEL.

Блог о программе Microsoft Excel: приемы, хитрости, секреты, трюки

Как построить график с нормальным распределением в Excel

Так как я часто имею дело с большим количеством данных, у меня время от времени возникает необходимость генерировать массивы значений для проверки моделей в Excel. К примеру, если я хочу увидеть распределение веса продукта с определенным стандартным отклонением, потребуются некоторые усилия, чтобы привести результат работы формулы СЛУЧМЕЖДУ() в нормальный вид. Дело в том, что формула СЛУЧМЕЖДУ() выдает числа с единым распределением, т.е. любое число с одинаковой долей вероятности может оказаться как у нижней, так и у верхней границы запрашиваемого диапазона. Такое положение дел не соответствует действительности, так как вероятность возникновения продукта уменьшается по мере отклонения от целевого значения. Т.е. если я произвожу продукт весом 100 грамм, вероятность, что я произведу 97-ми или 103-граммовый продукт меньше, чем 100 грамм. Вес большей части произведенной продукции будет сосредоточен рядом с целевым значением. Такое распределение называется нормальным. Если построить график, где по оси Y отложить вес продукта, а по оси X – количество произведенного продукта, график будет иметь колоколообразный вид, где наивысшая точка будет соответствовать целевому значению.

Таким образом, чтобы привести массив, выданный формулой СЛУЧМЕЖДУ(), в нормальный вид, мне приходилось ручками исправлять пограничные значения на близкие к целевым. Такое положение дел меня, естественно, не устраивало, поэтому, покопавшись в интернете, открыл интересный способ создания массива данных с нормальным распределением. В сегодняшней статье описан способ генерации массива и построения графика с нормальным распределением.

Характеристики нормального распределения

Непрерывная случайная переменная, которая подчиняется нормальному распределению вероятностей, обладает некоторыми особыми свойствами. Предположим, что вся производимая продукция подчиняется нормальному распределению со средним значением 100 грамм и стандартным отклонением 3 грамма. Распределение вероятностей для такой случайной переменной представлено на рисунке.

Из этого рисунка мы можем сделать следующие наблюдения относительно нормального распределения — оно имеет форму колокола и симметрично относительно среднего значения.

Стандартное отклонение имеет немаловажную роль в форме изгиба. Если посмотреть на предыдущий рисунок, то можно заметить, что практически все измерения веса продукта попадают в интервал от 95 до 105 граммов. Давайте рассмотрим следующий рисунок, на котором представлено нормальное распределение с той же средней – 100 грамм, но со стандартным отклонением всего 1,5 грамма

Здесь вы видите, что измерения значительно плотней прилегают к среднему значению. Почти все производимые продукты попадают в интервал от 97 до 102 грамм.

Небольшое значение стандартного отклонения выражается в более «тощей и высокой кривой, плотно прижимающейся к среднему значению. Чем больше стандартное, тем «толще», ниже и растянутее получается кривая.

Создание массива с нормальным распределением

Итак, чтобы сгенерировать массив данных с нормальным распределением, нам понадобится функция НОРМ.ОБР() – это обратная функция от НОРМ.РАСП(), которая возвращает нормально распределенную переменную для заданной вероятности для определенного среднего значения и стандартного отклонения. Синтаксис формулы выглядит следующим образом:

=НОРМ.ОБР(вероятность; среднее_значение; стандартное_отклонение)

Другими словами, я прошу Excel посчитать, какая переменная будет находится в вероятностном промежутке от 0 до 1. И так как вероятность возникновения продукта с весом в 100 грамм максимальная и будет уменьшаться по мере отдаления от этого значения, то формула будет выдавать значения близких к 100 чаще, чем остальных.

Давайте попробуем разобрать на примере. Выстроим график распределения вероятностей от 0 до 1 с шагом 0,01 для среднего значения равным 100 и стандартным отклонением 1,5.

Как видим из графика точки максимально сконцентрированы у переменной 100 и вероятности 0,5.

Этот фокус мы используем для генерирования случайного массива данных с нормальным распределением. Формула будет выглядеть следующим образом:

=НОРМ.ОБР(СЛЧИС(); среднее_значение; стандартное_отклонение)

Создадим массив данных для нашего примера со средним значением 100 грамм и стандартным отклонением 1,5 грамма и протянем нашу формулу вниз.

Теперь, когда массив данных готов, мы можем выстроить график с нормальным распределением.

Построение графика нормального распределения

Прежде всего необходимо разбить наш массив на периоды. Для этого определяем минимальное и максимальное значение, размер каждого периода или шаг, с которым будет увеличиваться период.

Далее строим таблицу с категориями. Нижняя граница (B11) равняется округленному вниз ближайшему кратному числу. Остальные категории увеличиваются на значение шага. Формула в ячейке B12 и последующих будет выглядеть:

В столбце X будет производится подсчет количества переменных в заданном промежутке. Для этого воспользуемся формулой ЧАСТОТА(), которая имеет два аргумента: массив данных и массив интервалов. Выглядеть формула будет следующим образом =ЧАСТОТА(Data!A1:A175;B11:B20). Также стоит отметить, что в таком варианте данная функция будет работать как формула массива, поэтому по окончании ввода необходимо нажать сочетание клавиш Ctrl+Shift+Enter.

Таким образом у нас получилась таблица с данными, с помощью которой мы сможем построить диаграмму с нормальным распределением. Воспользуемся диаграммой вида Гистограмма с группировкой, где по оси значений будет отложено количество переменных в данном промежутке, а по оси категорий – периоды.

Осталось отформатировать диаграмму и наш график с нормальным распределением готов.

Итак, мы познакомились с вами с нормальным распределением, узнали, что Excel позволяет генерировать массив данных с помощью формулы НОРМ.ОБР() для определенного среднего значения и стандартного отклонения и научились приводить данный массив в графический вид.

Вам также могут быть интересны следующие статьи

10 комментариев

Ренат, добрый день.
Все несколько проще:
Данные->Анализ данных->Генерация случайных чисел (Распределение=Нормальное)
+
Данные->Анализ данных->Гистограмма->Галка на «вывод графика» («Карманы» можно даже не задавать)

Смотрите так же:

  • Квитанция сбербанк госпошлина Квитанция Сбербанка Квитанция Сбербанка по форме ПД-4 предназначена для самостоятельного оформления любых видов платежей, за исключением платежей в бюджет (для платежей в бюджет, например оплаты налогов, пеней и т.д. следует использовать квитанцию Сбербанка по форме ПД-4сб). Скачать квитанцию Сбербанка ПД-4 можно в нескольких форматах. […]
  • Отредактировать заявления Заявление для открытия ИП: форма Р21001 Форма Р21001 или заявление по форме 21001 – главный регистрационный документ для ИП. Если вы решили зарегистрировать себя как Индивидуального Предпринимателя, то в налоговый орган вы подаете заполненное заявление Р21001. Индивидуальному предпринимателю для подготовки Р21001 образец заполнения […]
  • Кредит под залог антиквариата Антиквариат Выдаем займы под залог любого антиквариата: иконы, монеты, картины, статуэтки, ювелирные изделия, посуду и др. Оценка производится индивидуально, по согласованию с клиентом. В любом случае мы приходим к условиям, устраивающим обе стороны. Процентная ставка по займу - от 0,5% в день. Справки по тел. +7 (902) 378-67-65, […]
  • Ннгу приказ о зачислении 2018 Образование Информация приемной комиссии Приказы о зачислении Приказы о зачислении Как получать госуслуги быстро и просто? Университет Лобачевского входит в Ассоциацию ведущих университетов. Приказы о зачислении в ННГУ Какие возможности предоставляет портал госуслуг? Как зарегестрироваться на портале и получить […]
  • Как определить неустойку товара Об этой странице Как определить неустойку товара Эта страница отображается в тех случаях, когда автоматическими системами Google регистрируются исходящие из вашей сети запросы, которые нарушают Условия использования. Страница перестанет отображаться после того, как эти запросы прекратятся. До этого момента для использования служб Google […]
  • Приказ о помощи отделу Министерство здравоохранения Отдел контроля качества медицинской помощи населению Начальник отдела - Савельев Василий Петрович ПРИКАЗ МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ КАЛУЖСКОЙ ОБЛАСТИ от 05 сентября 2013 г. № 892 "О порядке организации и проведения ведомственного контроля качества и безопасности медицинской […]